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Abstract — Spectral polynomials expansion is incorporated 

in Finite-Difference Time-Domain method to perform 

uncertainty analysis in EM simulations. The generalized 

polynomial chaos (gPC) method is used as the expansion basis 

for parameter variations. Numerical examples are used to 

demonstrate the accuracy and efficiency of this proposed 

approach.  

 

I. INTRODUCTION 

The finite difference time domain (FDTD) method has been 

successfully used to analyze very complex electromagnetic 

problems [1-2]. However, when it is used to analyze some 

complex physical systems whereuncertainty may exist in 

some design parameters, extensive electromagnetic 

simulations are often required. Traditionally, the most 

popular method for uncertainty analysis is Monte Carlo 

Method (MCM) in which the simulations are performed at 

the randomly sampled parameter spaces[3]. Although MCM 

is very straight forward, its relative slow converge rate 

makes it impossible to perform complex structure EM 

simulation to extract statistical information. Recently, there 

has been growing interest in the generalized polynomials 

chaos (gPC) method [4] for uncertainty modeling. Most of 

these efforts have been carried out in computational fluid 

dynamics (CFD) withsatisfactory results [5]-[6]. 

In this work, the gPC method, which is a spectral 

stochastic expansion approach, is applied in FDTD for 

stochastic computation of EM problems.  

II. THOERY 

The gPC method for computational analysis was first 

proposed by Xiu based on Wiener-Askey polynomials, 

which are a class of hypergeometic orthogonal 

polynomials.[4]. Each subset of Askey polynomials 

corresponds to a certain type of stochastic distribution and 

has a different set of optimal weighting function. As shown 

in [7], any second order stochastic process can converge in 

the 
2 ( )L C sense. Consider a random process ( )X  ,   being 

the random event; it can be expressed using polynomial 

expansion as: 
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Where 
1 2( ) [ ( ), ( ), ( )]N       ξ denotes a n-

dimensional mutual independent random variable, which 

can be used to characterize the probability space [7]. 

The orthogonal property of polynomial basis function 

indicates that 

                                  2

i j ij i                                (2) 

where the 
ij is the Kronecker delta and the inner product is 

defined as: 
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Here   represents the event space and the weight function 

( )W ξ  can be properly chosen with respect to the basis 

polynomials 
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     Physical system often can be represented by a 

governing partial differential equation (PDE). The 

polynomial expansion can be projected into the PDE and 

get stochastic solution. 

Consider a stochastic PDE has the forms of 

                       ( ( , , )) ( , , )L u x t f x t                                 (4) 

where ( )L   is the differential operator; ( , , )f x t   is the 

excitation term; ( , , ) u x t  is the stochastic solution of the 

PDE. Expanding the stochastic solution using 

corresponding Askey polynomial basis and using  order of P 

to represent the expansion, we can have 
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If the dimension of random variable ( )ξ  is N and the 

highest order of polynomial to be used is M, then the total 

expansion order P is given by 
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Substituting (5) into (4) yields 
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By taking the inner product on both sides of (7), we have  
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Due to the orthogonal property of polynomial basis, we 

can obtain P+1 equations for each coefficient ˆ ( , )iu x t .After 

all coefficients are obtained, statistic information can be 

extracted, such as mean and variance by: 
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By this spectral expansion approach, the original stochastic 

analysisis transformed to into obtaining the expansion 
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coefficients. This can be efficiently implemented into the 

FDTD method where only one simulation is required. This 

is one of the advantages of this approach over other 

stochastic sampling method. 

III. NUMERICAL RESULTS 

To demonstrate the effectiveness of this proposed 

approach, the gPC-FDTD method is used to analyze the 

reflection and transmission coefficients of a dielectric slab 

as shown in figure 1. The height of the slab is 20 cm and the 

relative permittivity has Gaussian distribution with mean 

equal to 4 and standard variance equal to 0.4.The incident 

wave is derivative Gaussian pulse.  

 

 
Fig. 1. Dielectric slab model  

 

 
Fig. 2. Mean of reflection coefficient 

 
Fig. 3. Standard deviation of reflection coefficient 

Figure 2 and Figure 3 show the mean and standard 

derivation of reflection coefficient with respect to frequency. 

Validations were performed by MCM with 400 realizations. 

As we can see from these figures, the gPC method has very 

good agreement of MCM. And table I shows the 

computational requirement of two different methods: 

TABLE I   

COMPUTATIONAL REQUIREMENT   

Method 
Number of 

Realizations 
Total Time (h) Memory (MB) 

MCM 400 ~ 13 ~ 30 

GPC 1 ~ 0.95 ~ 120 

 

IV. CONCLUSION 

The mathematical framework of gPC method is applied 

into FDTD for EM simulations. Numerical results indicate 

gPC method can accurately predict the stochastic solution 

for EM problems. Although more memory required, gPC 

proves an efficient way for stochastic EM computation in 

that it greatly reduces the simulation time. More details 

results and discuss will be included in the full version of this 

paper. 

V. REFERENCES 

[1] K. Yee, “Numerical solution of initial boundary value problems 

involving maxwell’s equation in isotropic media,” IEEE Trans. 

Antennas Propag., vol.14, no.3, pp. 302-307, 1966. 

[2] Allen Talflove and Susan C. Hagness, Computational 

Electrodynamics: The Finite-Difference Time-Domain Method, 3rd 

ed.,  Artech House, MA, 2005. 

[3] George Fishman, Monte Carlo: Concepts, Algorithms, and 

Applications, Springer-Verlag, New York, 1996. 

[4] D. B. Xiu and G. E. Karniadakis, “The Wiener-Askey polynomial 

chaos for stochastic differential equations,” SIAM J. Sci. Comput, 

vol. 24, no.2, pp. 619-644, 2002. 

[5] D. B. Xiu and G. E. Karniadakis, “Modeling uncertainty in flow 

simulations via generalized polynomial chaos,” J. Comput. Phys., 

vol. 187, no.1, pp. 137-167, 2003. 

[6] O. M. Knio and O. P. Le ˆMa1tre , “Uncertainty propagation in CFD 

using polynomial chaos decomposition”, Fluid. Dyn. Res. vol. 38, no. 

9, pp. 616-640, 2006. 

[7] R. Cameron and W. Martin, “The orthognonal development of 

nonlinear functionals in series of Fourier-Hermite functionals,”  Ann. 

Math.  vol. 48, no.2, pp. 385-392, 1947. 

 

 

 

 

 

 

 

 

 

 

 

 
 


